Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Food Funct ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625681

RESUMO

Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.

2.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599426

RESUMO

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.

3.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540948

RESUMO

Bifidobacterium longum is a common probiotic; both viable and heat-inactivated Bifidobacterium longum have many probiotic effects, such as anticancer effects. But some mechanisms of anticancer effects are still unclear, especially for heat-inactivated probiotics. In this study, we analyzed the effects of viable and heat-inactivated Bifidobacterium longum D42 on human colon cancer cells (HT-29). Cell proliferation, membrane permeability and apoptosis were detected by using the CCK-8 method, LDH method and Annexin V-FITC/PI kits. The ROS level and mitochondrial membrane potential were examined using the fluorescent probes DCFH-DA and JC-1. Real-time fluorescence quantitative PCR (RT-qPCR) and Western blot were used to detect the expression of mitochondrial apoptosis pathway genes and proteins. The results showed that viable and heat-inactivated Bifidobacterium longum D42 at concentrations of 1 × 106 CFU/mL significantly inhibited the proliferation of and increased the level of LDH release of HT-29 colon cancer cells. We found that they could increase the apoptosis rate of HT-29 cells. Moreover, they could also induce apoptosis by inducing cells to produce ROS and destroying the mitochondrial membrane potential of cells. Further studies found that they could increase the mRNA transcription and protein expression levels of the Caspase-3, Caspase-9 and Bax genes in cells, and reduce the mRNA transcription and protein expression levels of the Bcl-2 gene. In summary, our findings revealed that viable and heat-inactivated Bifidobacterium longum D42 have inhibitory effects on proliferation and promote the apoptosis of human colon cancer cells, and also have certain adjuvant drug therapeutic effects and have potential application value in the adjuvant treatment of colon cancer.

4.
Front Immunol ; 15: 1271926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426086

RESUMO

Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 µM and 1.65 µM, respectively. 3'-SL (10 µM) and OPN (4 µM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 µg/mL of 3'-SL with 500 µg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.


Assuntos
Influenza Humana , Orthomyxoviridae , Lactente , Feminino , Humanos , Osteopontina/genética , Influenza Humana/tratamento farmacológico , Leite Humano/metabolismo , Oligossacarídeos/farmacologia , Antivirais
5.
Int J Biol Macromol ; 262(Pt 1): 130006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331067

RESUMO

The processing characteristics of yogurt are closely related to the composition and arrangement of exopolysaccharides (EPS) in lactic acid bacteria (LAB). To fully understand and develop the functional properties of EPS and to study the effect of EPS molecular weight on yogurt and its mechanism, the physicochemical properties of high molecular weight EPS-LH43, medium molecular weight EPS-LH13, and low molecular weight EPS-LH23, as well as the gel properties and protein conformation of yogurt, were determined and analyzed in this experiment. The results indicate that EPS-LH43 and EPS-LH13 are both composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. EPS-LH23 is composed of mannose, galacturonic acid, glucose, and galactose. Their Number-average Molecular Weight is 5.21 × 106 Da, 2.39 × 106 Da and 3.76 × 105 Da, respectively. In addition, all three types of EPS have good thermal stability and can improve the stability of casein. In addition, the analysis of the texture, particle size, potential, water holding capacity, rheology, low field nuclear magnetic resonance, microstructure, and flavor characteristics of yogurt confirmed the relationship between the molecular weight of LAB EPS and the gel properties of yogurt. Fluorescence spectrophotometer and circular dichroism analysis indicate that the different molecular weights of LAB EPS have different effects on protein structure, which is an intrinsic factor leading to significant differences in the gel properties of the three types of fermented milk. These findings provide new references for enhancing the understanding of the structure-activity relationship of EPS and indicate that EPS-LH43 can be used to improve the gel properties of dairy products.


Assuntos
Ácidos Hexurônicos , Lactobacillus helveticus , Iogurte , Iogurte/microbiologia , Polissacarídeos Bacterianos/química , Peso Molecular , Galactose/análise , Manose , Glucose/análise , Fermentação
6.
Int J Biol Macromol ; 260(Pt 1): 129480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237823

RESUMO

Exopolysaccharides (EPS) yield and added concentration of lactic acid bacteria can greatly affect the processing characteristics of fermented milk. In order to investigate the effects and mechanisms of EPS yield and added concentration on fermented milk, researchers extracted EPS from 50 strains of Lactobacillus helvedicus (L. helvedicus) and selected the two strains with the largest difference in EPS yield (L. helvedicus LH18 and L. helvetigus LH33) for subsequent experiments. The physicochemical properties of EPS-LH18 and EPS-LH33 were analyzed. The gel characteristics and protein conformation of fermented milk were studied by means of texture analyzer, rheometer, scanning electron microscopy, nuclear magnetic resonance machine, fluorescence spectrophotometer and circular dichroism. The results indicate that the monosaccharide compositions of EPS-LH18 and EPS-LH33 are the same and have good thermal stability. The texture and rheological properties of L. helveticus LH18 fermented milk are significantly superior to other fermented milk. The reason is that L. helveticus LH18 EPS has the highest yield, which leads to a denser gel structure, lower surface hydrophobicity and free sulfhydryl content of its fermented milk. According to circular dichroism analysis, ß- sheet and random coil are the internal factors leading to the difference in fermented milk gel. In addition, the fermented milk improved even more favorably as the concentration of the two EPS additions increased. As described above, L. helveticus LH18 has the potential to be an excellent yogurt starter, and both of the above EPS can be used as probiotic stabilizer alternatives for fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus helveticus , Probióticos , Animais , Leite/química , Lactobacillus helveticus/metabolismo , Fermentação , Produtos Fermentados do Leite/microbiologia , Iogurte/microbiologia
7.
Int J Biol Macromol ; 257(Pt 2): 128733, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092118

RESUMO

Over the past few decades, researchers have discovered that probiotics play an important role in our daily lives. With the further deepening of research, more and more evidence show that bacterial metabolites have an important role in food and human health, which opens up a new direction for the research of lactic acid bacteria (LAB) in the food and pharmaceutical industry. Many LAB have been widely studied because of the ability of exopolysaccharides (EPS). Lactic acid bacteria exopolysaccharides (LAB EPS) not only have great potential in the treatment of human diseases but also can become natural ingredients in the food industry to provide special qualitative structure and flavor. This paper has organized and summarized the biosynthesis, strain selection, production process parameters, structure, and biological activity of LAB EPS, filling in the monotony and incompleteness of previous articles' descriptions of LAB EPS. Therefore, this paper focuses on the general biosynthetic pathway, structural characterization, structure-activity relationship, biological activity of LAB EPS, and their application in the food industry, which will help to deepen people's understanding of LAB EPS and develop new active drugs from LAB EPS. Although the research results are relatively affluent, the low yield, complex structure, and few clinical trials of EPS are still the reasons that hinder its development. Therefore, future knowledge expansion should focus on the regulation of structure, physicochemical properties, function, higher production of EPS, and clinical trial applications, which can further increase the commercial significance and value of EPS. Furthermore, better understanding the structure-function relationship of EPS in food remains a challenge to date.


Assuntos
Lactobacillales , Probióticos , Humanos , Lactobacillales/metabolismo , Polissacarídeos Bacterianos/química , Relação Estrutura-Atividade , Indústria Alimentícia
8.
Food Chem ; 440: 137522, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128430

RESUMO

The milk fat globules in infant formula (IF) are encapsulated by a component known as milk fat globule membrane (MFGM). However, it is currently unclear whether the improved emulsion stability of MFGM can have a profound effect on the finished IF. Therefore, this study investigated the effects of MFGM on the particle size, stability, rheology, and microstructure of emulsions prepared by dairy ingredients via wet mixing. Further, IF were processed using such emulsions, the physicochemical properties, surface composition of the powders were examined. The results showed that MFGM reduced the particle size of the emulsion, increased the viscosity, and improved the microstructure of the MFGM. Furthermore, MFGM reduced the moisture content of the powder, increased the glass transition temperature, and reduced the presence of surface fat. In conclusion, the addition of MFGM enhance the finished powder stability by improving the emulsion stability prepared during IF manufacturing.


Assuntos
Glicolipídeos , Glicoproteínas , Fórmulas Infantis , Humanos , Lactente , Emulsões , Pós , Fórmulas Infantis/química , Glicolipídeos/química , Gotículas Lipídicas
10.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627987

RESUMO

In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.

11.
J Agric Food Chem ; 71(23): 8915-8930, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255290

RESUMO

Changes in the functions of the intestinal barrier occur in parallel with the development of sepsis. The protection by Bifidobacterium strains (BB, BL, BB12, and BLBB) was evaluated in mice injected with lipopolysaccharide (LPS). The results revealed an increase in the ratio of ileal villus length to crypt depth in the BLBB group compared with that in the LPS group, as were the number of IgA+ plasma, CD4+/CD8+ T, and dendritic cells. The levels of diamine oxidase (DAO) and d-lactic acid in the serum were lessened in the BLBB group after LPS injection compared with that in the LPS group. In addition, the BLBB group exhibited an increased expression level of tight junction proteins (zonula occludens-1, occludin, and claudin-1), mucin (MUC2) mRNA, reduced NFκB/MAPK signaling pathways, and decreased expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α). The BLBB group enriched the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, Clostridia_Ucg-014, and Alistipes, resulting in an increase in strains producing short-chain fatty acids. Furthermore, the BLBB group leads to higher levels of deoxycholic acid and biosynthesized linoleate. This study suggested that the BLBB group could enhance the capacity of the intestinal barrier and intestinal mucosal immunity, reduce intestinal inflammation, and improve the composition of gut microbiota. Bifidobacterium bifidum E3 combined with Bifidobacterium longum subsp. infantis E4 may thus serve as a probiotic against the intestinal injury caused by LPS.


Assuntos
Bifidobacterium bifidum , Bifidobacterium longum , Enteropatias , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo
12.
Front Nutr ; 10: 1147423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020807

RESUMO

Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is characterized by high-fat deposits in the liver and causes substantial economic challenges to any country's workforce. Previous studies have indicated that some lactic acid bacteria may effectively prevent or treat NAFLD. Overall, L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving liver characteristics and modulating microbiota composition, and thus could be a candidate for improving NAFLD. This study aimed to assess the protective effects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD. First, hepatic lipid profile and histological alterations were determined to study whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal permeability and gut barrier were explored. Finally, gut microbiota was analyzed to elucidate the mechanism from the insights of the gut-liver axis. The results showed that Lactobacillus KLDS1.0901 administration significantly decreased body weight, Lee's index body, fat rate, and liver index. L. acidophilus KLDS1.0901 administration significantly improved lipid profiles by decreasing the hepatic levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C) levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901 administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L. acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed mice by decreasing the NAS score and lipid area per total area. Our results showed that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) concentrations accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901 administration could improve the intestinal barrier function by upregulating the mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled to the decreases of the concentration of LPS and D-lactic acid. Notably, L. acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can be used as a candidate to ameliorate NAFLD.

13.
Microbiol Spectr ; 11(3): e0081423, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37074200

RESUMO

A simple model of alternative microbiota in the developing intestinal environment has been highly desirable for the study of health and disease in the gut. The pattern of antibiotic depletion of natural gut microbes is necessary for this model. However, the effects and loci of antibiotic deletion of gut microbes remain unclear. In this study, a mixture of three proven broad-spectrum antibiotics was selected to study their effects on microbial deletions in the jejunum, ileum, and colon of mice. The 16S rRNA sequencing results showed that antibiotics significantly reduced colonic microbial diversity, with limited effects on the jejunum and ileum. At the level of microbial genera, only 93.38% of Burkholderia-Caballeronia-Paraburkholderia and 5.89% of Enterorhabdus were present in the colon after antibiotic treatment. However, such changes were not observed in the microbial composition of the jejunum and ileum. Our results suggest that the antibiotics depleted intestinal microorganisms by acting primarily in the colon and not in the small intestine (jejunum and ileum). IMPORTANCE Many studies have applied antibiotics to delete intestinal microbes to shape pseudosterile mouse models and further used for fecal microbial transplantation. However, few studies have explored the spatial location of antibiotic action in the intestine. This study shows that the selected antibiotics effectively deleted microbiota in the colon of mice, with limited effects on microbes in the jejunum and ileum. Our study provides guidance for the application of a mouse model of antibiotic deletion of intestinal microbes.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Animais , Camundongos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Intestino Delgado , Colo
14.
Clin Exp Optom ; : 1-7, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36794379

RESUMO

CLINICAL RELEVANCE: Myopia has become a public health priority as its prevalence increases worldwide, and in clinical practice, the precise evaluation of refraction errors is necessary. BACKGROUND: This study aimed to compare objective and subjective refraction measured by a binocular wavefront optometer (BWFOM) in adults with conventional objective and subjective refractions measured by an optometrist. METHODS: This cross-sectional study included 119 eyes of 119 participants (34 men and 85 women; mean age:27.5 ± 6.3 years). Refractive errors were measured using BWFOM and conventional methods, with and without cycloplegia. The mean outcome measures were spherical power, cylindrical power, and spherical equivalence (SE). The agreement test was assessed using a two-tailed paired t-test and Bland - Altman plots. RESULTS: Under noncycloplegic conditions, there were no significant differences in the objective SE between BWFOM and Nidek. Significant differences in subjective SE were observed between BWFOM and conventional subjective refraction (-5.79 ± 1.86 vs -5.65 ± 1.75 D, P < 0.01). Under cycloplegic conditions, the mean objective SE was significantly different between BWFOM and Nidek (-5.70 ± 1.76 vs -5.50 ± 1.83 D, P < 0.001); the mean subjective SE was significantly different between BWFOM and conventional subjective refractions (-5.52 ± 1.77 vs -5.62 ± 1.79 D, P < 0.001). The Bland - Altman plots revealed mean percentages of 95.38% and 95.17% for the points within the limits of agreement between BWFOM and conventional measurements and those between noncycloplegic and cycloplegic refractions, respectively. CONCLUSION: The BWFOM is a new device that measures both objective and subjective refraction. It is more convenient and faster to obtain a proper prescription at a 0.05-D interval. The subjective refraction results of the BWFOM and the conventional subjective refraction were in good agreement.

15.
JAMA Netw Open ; 6(1): e2252553, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36692877

RESUMO

Importance: Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis and improved response to cancer immunotherapy. The current approach for evaluation of TLSs is limited by interobserver variability and high complexity and cost of specialized imaging techniques. Objective: To develop a machine learning model for automated and quantitative evaluation of TLSs based on routine histopathology images. Design, Setting, and Participants: In this multicenter, international diagnostic/prognostic study, an interpretable machine learning model was developed and validated for automated detection, enumeration, and classification of TLSs in hematoxylin-eosin-stained images. A quantitative scoring system for TLSs was proposed, and its association with survival was investigated in patients with 1 of 6 types of gastrointestinal cancers. Data analysis was performed between June 2021 and March 2022. Main Outcomes and Measures: The diagnostic accuracy for classification of TLSs into 3 maturation states and the association of TLS score with survival were investigated. Results: A total of 1924 patients with gastrointestinal cancer from 7 independent cohorts (median [IQR] age ranging from 57 [49-64] years to 68 [58-77] years; proportion by sex ranging from 214 of 409 patients who were male [52.3%] to 134 of 155 patients who were male [86.5%]). The machine learning model achieved high accuracies for detecting and classifying TLSs into 3 states (TLS1: 97.7%; 95% CI, 96.4%-99.0%; TLS2: 96.3%; 95% CI, 94.6%-98.0%; TLS3: 95.7%; 95% CI, 93.9%-97.5%). TLSs were detected in 62 of 155 esophageal cancers (40.0%) and up to 267 of 353 gastric cancers (75.6%). Across 6 cancer types, patients were stratified into 3 risk groups (higher and lower TLS score and no TLS) and survival outcomes compared between groups: higher vs lower TLS score (hazard ratio [HR]; 0.27; 95% CI, 0.18-0.41; P < .001) and lower TLS score vs no TLSs (HR, 0.65; 95% CI, 0.56-0.76; P < .001). TLS score remained an independent prognostic factor associated with survival after adjusting for clinicopathologic variables and tumor-infiltrating lymphocytes (eg, for colon cancer: HR, 0.11; 95% CI, 0.02-0.47; P = .003). Conclusions and Relevance: In this study, an interpretable machine learning model was developed that may allow automated and accurate detection of TLSs on routine tissue slide. This model is complementary to the cancer staging system for risk stratification in gastrointestinal cancers.


Assuntos
Neoplasias Gástricas , Estruturas Linfoides Terciárias , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estruturas Linfoides Terciárias/patologia , Prognóstico , Estadiamento de Neoplasias , Linfócitos do Interstício Tumoral/patologia , Neoplasias Gástricas/patologia
16.
Food Chem ; 410: 135413, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623461

RESUMO

The gut microbiota plays an evolutionarily conserved role in host metabolism, which is influenced by diet. Here, we investigated differences in shaping the gut microbiota and regulating metabolism in cow milk-based infant formula, goat milk-based infant formula, and mix milk-based infant formula compared with pasteurized human milk. 16S rRNA results showed that goat milk-based infant formula selectively increased the relative abundance of Blautia, Roseburia, Alistites and Muribaculum in the gut compared to other infant formulas. Metabolomics identification indicated that goat milk-based infant formula mainly emphasized bile acid biosynthesis, arachidonic acid metabolism and steroid biosynthesis metabolic pathways. Metabolites associated with these metabolic pathways were positively associated with increased microorganisms in goat milk-based infant formula, particularly Alistipes. Furthermore, we found a deficiency of Akkermansia abundance in three infant formula-fed compared to pasteurizedhuman milk-fed. This study presents new insights into the improvement and application of goat milk-based infant formulas in terms of intestinal microecology.


Assuntos
Microbioma Gastrointestinal , Fórmulas Infantis , Bovinos , Feminino , Humanos , Animais , Lactente , Camundongos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Leite Humano , Fezes , Cabras/genética
17.
Front Microbiol ; 13: 1028919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274719

RESUMO

Ulcerative colitis (UC) is challenging to treat and severely impacts patients and families. A previous study reported immunomodulatory and reduction of pro-inflammatory properties for the Lactiplantibacillus plantarum L15. This study aimed to analyze the preventive properties and mechanistic actions in an in vivo colitis model. The histopathological alteration, inflammation cytokines, and intestinal barrier function were analyzed. Subsequently, the cecal gut microbiota contents and products from different groups were detected. Finally, gene expressions related to the NF-κB signaling process were evaluated. L. plantarum L15 significantly decreased disease activity index (DAI), myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) level, and increased weight change, colon length, and production of inflammation-suppressing cytokines. Furthermore, this strain supplementation substantially increased ZO-1, Occludin, and Claudin-1, and MUC2 mRNA expression levels with a corresponding decrease in serum lipopolysaccharide and D-lactic acid contents. In addition, L. plantarum L15 improved gut microbiota composition and increased short-chain fatty acid (SCFAs) in the colon content, which significantly reduced the transfer of NF-κB p65 to the nucleus. Our findings provide a theoretical basis for L. plantarum L15 as a preventive candidate for UC.

18.
Food Chem X ; 15: 100382, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211760

RESUMO

The emulsifying activity of soy protein would decrease after long-term storage, which caused huge economic losses to food processing plants. This study explored the temporal evolution mechanism of oxidation on the structure and function of soy protein aggregates, which would improve the application of soy protein in food industry. Decreased α-helix and increased random coil were observed at the initial oxidation stage (0-4 h), which induced increases in hydrophobicity and disulfide bond content. In addition, emulsibility increased significantly. However, when the oxidation time extended to 6-12 h, the soluble aggregates transformed into insoluble aggregates with large particle size, low solubility, and molecular flexibility. Surface hydrophobicity and emulsifying activity were reduced, resulting in bridging flocculation of emulsion droplets. Mutual transformation between components is affected by factors that include spatial conformation and intermolecular forces, which eventually lead to functional changes in the protein molecules.

19.
J Agric Food Chem ; 70(42): 13615-13625, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251343

RESUMO

As a natural prebiotic in human milk, 2'-fucosyllactose (2'-FL) is actively used in infant formula (IF). However, the 2'-FL influence on the improvement of gut microbiota and the regulation of the immune function remains unknown. In this study, human microbiota-associated (HMA) mice were used to demonstrate that feeding 2'-FL-containing IF was comparable to human milk at levels of immune cytokines (IL-2, IL-9, IL-10, and sIgA) and short-chain fatty acids (SCFAs, i.e., acetate and propionate). In addition, 2'-FL increased the abundance of Blautia and Olsenella and improved the anti-inflammatory cytokine IL-10 levels. The abundance of Blautia and Olsenella positively correlated with the IL-10 levels. 2'-FL also decreased the abundance of Enterorhabdus and Lachnospiraceae_UCG-006 and elevated SCFA levels, showing a negative correlation between these genera and SCFAs. Our findings revealed that feeding 2'-FL-containing IF drives the levels of cytokines and SCFAs toward human milk levels by shaping the beneficial gut microbiota profile.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Humanos , Camundongos , Animais , Interleucina-10/genética , Propionatos , Interleucina-2 , Interleucina-9 , Ácidos Graxos Voláteis , Citocinas , Anti-Inflamatórios , Imunoglobulina A Secretora , Imunidade
20.
Front Immunol ; 13: 947755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091059

RESUMO

The intestine is the largest digestive and immune organ in the human body, with an intact intestinal mucosal barrier. Bifidobacterium longum is the specific gut commensals colonized in the human gut for boosting intestinal immunity to defend against intestinal mucosal immune injury. In the LPS-induced intestinal injury model, the Bifidobacterium longum BL-10 was suggested to boost the intestinal immune. Detailly, compared with the LPS-induced mice, the BL10 group significantly reduced intestine (jejunum, ileum, and colon) tissue injury, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-17, IL-22, and IL-12) levels and myeloperoxidase activities. Moreover, the B. longum BL-10 significantly increased the number of immunocytes (CD4+ T cells, IgA plasma cells) and the expression of tight junction protein (Claudin1 and Occludin). B. longum BL-10 regulated the body's immune function by regulating the Th1/Th2 and Th17/Treg balance, which showed a greater impact on the Th1/Th2 balance. Moreover, the results also showed that B. longum BL-10 significantly down-regulated the intestinal protein expression of TLR4, p-IκB, and NF-κB p65. The B. longum BL-10 increased the relative abundance of the genera, including Lachnospiraceae_NK4A136_group and Clostridia_UCG-014, which were related to declining the levels of intestinal injury. Overall, these results indicated that the B. longum BL-10 had great functionality in reducing LPS-induced intestinal mucosal immune injury.


Assuntos
Bifidobacterium longum , Animais , Humanos , Imunidade , Imunomodulação , Mucosa Intestinal , Lipopolissacarídeos/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...